
NRL Report 6961

A Fast, Flexible, Highly Parallel
Associative Processor

JOHN E. SHORE AND FRANK A. POLKINGHORN, JR.

Intercept and Signal Processing Branch
Electronics Warfare Division

November 28, 1969

I NAVAL RESEARCH LABORATORY
Washington, D.C.

I his document has been approved for public release and sale; its distribution is unlimited.

CONTENTS

Abstract iii
Problem Status iii
Authorization iii
Glossary of Abbreviations iv

1. Introduction 1

2. Associative Devices 2

3. Introduction to the Proposed Associative Processor 2

4. Description of the AP 3

4.1 The Syllable Definition Register 4

4.2 The Comparand 5

4.3 The Search Command Registers and the Associative Search
Operation 5

4.4 The Multioperation Register 8

4.4.1 The Multiwrite 9

4.4.2 The Multiadd 9

4.5 Conventionally Addressed Operations 10

4.6 Simultaneous Operations 10

4.7 Complex Arithmetic Operations 12

4.7.1 Logical Operations 12

4.7.2 Multiplication of all AM Words by the Comparand 13

4.7.3 Addition of Two Syllables Within Every Word 14

4.7.4 Multiplication of Two Syllables Within Every Word 14

5. Design of the Associative Processor 15

5.1 The Chip 15

5.1.1 Addition 16

5.1.2 The Associative Search 19

i

5.1.2.1 The "Don't Care" Search 20
5.1.2.2 The Exact Match Search 20
5.1.2.3 Search for Larger Elements 20
5.1.2.4 Search for Smaller Elements 21
5.1.2.5 The SDR and Its Use in the Associative Search 22

5.1.3 The AM Read 22

5.1.4 The AM Write 22

5.1.5 Simultaneous Operations 23

5.2 The Response Store 23

5.2.1 The RS and the Associative Search 24

5.2.2 The RS and the Multioperations 25

5.2.3 The Conventional Read, Write, and Add 25

5.2.4 The Response Bit Complement Operation 25

5.2.5 The RS and Simultaneous Operations 26

5.3 Response Resolution Network 26

5.4 Timing Considerations 30

5.4.1 The Associative Search Time 31

5.4.2 Addition Time 33

5.4.2.1 Multiaddition Time 33
5.4.2.2 Conventional Addition Time 34

5.4.3 AM Write Time 34

5.4.3.1 Multiwrite Time 34
5.4.3.2 Conventional Write Time 35

5.4.4 AM Read Time 35

5.4.5 Reduced Operation Times 35

5.4.6 Simultaneous Operation Times 36

5.4.7 The Response Resolution Time 37

5.4.8 Practical Considerations 37

5.5 Interword Communication - Future Developments in the AP
Communication Topology 38

APPENDIX A - Boolean Equations for the Associative Chip 41

APPENDIX B - Boolean Equations for the Response Store 42

ii

ABSTRACT

The logical design and operation of a general purpose associative proc-
essor (GPAP) is described. The basic circuit consists of a powerful associ-
ative cell which may be combined with an integral number of identical cells
and implemented in MSI or LSI at a reasonable cost. A complete description
of this cell, together with logic diagrams, Boolean equations, and a detailed
timing analysis are presented.

The processor obtained by connecting these cells together in quantity
has both variable syllable and variable instruction capability. That is, the
total associative word length can be split on a software basis into any num-
ber of syllables (fields), each of arbitrary length. The search criteria
(greater than, less than, greater than or equal to, less than or equal to, exact
match, and don't care) can be specified independently for each of these syl-
lables. The search time depends only on the width of the largest syllable and
is typically less than 1 microsecond (assuming gate delays of approximately
20 nanoseconds).

The problem of multiple responses (priority resolution) is considered in
detail. The design of a high-speed, inexpensive (in terms of the number of
gates required per word) response resolution network is presented.

Other GPAP operations include conventionally addressed read, write,
add, multiwrite, multiadd, and logical operations. Simultaneous operations,
such as write-on-match and add-on-match, are also possible. These capa-
bilities, as well as several other unique properties of the design which con-
tribute to its general purpose character and high speed of operation are
described in detail.

GPAP will be controlled by a microprogrammable processor with timing
produced by a clock inhibit network which counts down a compiler-produced
operation-time parameter.

PROBLEM STATUS

This is an interim report on a continuing NRL Problem.

AUTHORIZATION

NRL Problem R06-41
Project NavAir System A37-533-000/6521/WF08-151-702

Manuscript submitted July 14, 1969.

iii

GLOSSARY OF ABBREVIATIONS

AM Associative memory

AMAR Associative memory address register

AMOB Associative memory output buffer

AP Associative processor

CIN Clock inhibit network

COMP Comparand register

GPAP General purpose associative processor

IR Instruction register

J "J" input to flip-flop

K "Kt' input to flip-flop

MOR Multioperation register

MPP Microprogram processor

QnI Flip-flop output before clock pulse n + 1

Qn,+, Flip-flop output after clock pulse n+ 1

RB Response bit

RRB Response resolution bit

RRN Response resolution network

RS Response store

SCi Search command one register

SC2 Search command two register

SDR Syllable definition register

iv

A FAST, FLEXIBLE, HIGHLY PARALLEL
ASSOCIATIVE PROCESSOR

1. Introduction

Over the years since the introduction of the modern general purpose computer,
processing speeds have increased by several orders of magnitude. Most of the improve-
ment has resulted from better hardware and better programming techniques. Only a
small part is the result of modifications to the organization of the machines. Even today,
general purpose computers on the market for the most part still follow the basic organi-
zation of the von Neumann machine and perform calculations sequentially. Such organi-
zational modifications that have been made for the most part involve an increase in par-
allel processing capability.

These departures from the classic von Neumann organization have generally followed
one of two basic paths. In one, several (von Neumann) general purpose computers are
tied together into a multiprocessing system, the first of which was the Burroughs D825
system.. In this type of configuration, different branches of one program (or several in-
dependent programs) are executed independently. That is, different multiprocessor ele-
ments execute different instructions on different data bases. It is this extremely free
structure that limits the size of multiprocessing systems, as expressed by the number of
individual processors. This is due both to the expense (each element is a general pur-
pose computer) and to the software problem of tying many sophisticated processors to-
gether so freely.

Many general problems, both military and commercial, cannot be treated with cur-
rently available sequential processors or multiprocessors. Examples include air traffic
control, numerical weather forecasting through solution of the atmospheric equations,
atomic reactor calculations, mapping and charting, complex pattern recognition, ocean
surveillance, and signal processing. The inability to ever meet these real time process-
ing requirements on a sequential machine relates to the intrinsic limitations of switching
speeds, memory speeds, and signal propagation delays. Only with the development of an
advanced parallel processing capability can we expect to effectively treat these problems.
All of the problems mentioned have in common that they require a processing system in
which a large number of processing elements execute the same instruction on different
data bases (as compared with different instructions on different data bases in multiproc-
essing). This is the second path taken in departures from von Neumann machine organi-
zation, and is illustrated by the SOLOMON computer and ILIAC IV.

One way of describing the degree of parallelism in such a machine is by the size of
the individual data bases. For example, in ILIAC IV each processing element works on a
2048-word (64-bit) local memory. Clearly, overall processing capability reaches a max-
imum when each processing element works on a data base of only one word (assuming
that the processing capability of each element remains constant). One way of providing
this one-on-one processing capability is through use of associative (or content address-
able) memories and processors.

1

SHORE AND POLKEINGHORN, JR.

2. Associative Devices

Associative memories have been generally described as a collection of data storage
elements which can be accessed in parallel on the basis of data content as opposed to
conventional addressing techniques. In most configurations the basic operation of such a
device is the exact match search, in which all associative elements are simultaneously
compared to a given word (the comparand) and response store bits are set to indicate
which words in associative memory are equal to the comparand. A response resolution
mechanism then supplies the control device with a list of addresses that have responded.
Usually, a mask register is used to inhibit portions of the comparand, thus permitting
only certain bits to be used as the search criteria.

Extending the comparand to include the ability to use previously set response bits as
criteria for additional searches, as well as adding to the basic hardware of the associa-
tive memory, permits a wide range of increased capability. Single or compound searches
that might be implemented include:

equal not equal

less than greater than

less than or equal greater than or equal

maximum value minimum value

between limits not between limits

next higher next lower.

If arithmetic and multiwrite circuitry is also included, operations such as write-on-
match and add-on-match may also be made available.

An additional level of sophistication and processing capability is available through
use of a variable instruction technique in which the search criteria for each syllable can
be specified independently and simultaneously. (A syllable may be defined as a contigu-
ous sequence of bits within a word.) Suppose, for example, we have a 48-bit associative
machine divided (through hardware constraints) into six eight-bit syllables. Then in one
cycle we might search for all words having their first syllable equal to the first syllable
of the comparand, their second syllable greater than the second syllable of the compar-
and, etc. Let us call such a device a fixed syllable, variable instruction associative
processor.

To go one step further, we might remove all hardware constraints on syllable size
and place the definition of each syllable under software control, thus obtaining a variable
syllable (or floating syllable), variable instruction machine.

3. Introduction to the Proposed Associative Processor

The main body of this report describes the design of a proposed associative proces-
sor, concentrating on the solid state associative chip that represents the major develop-
mental item. For research purposes, to investigate the application of associative tech-
niques to the problems enumerated in Section 1, one would like to have as sophisticated
and flexible an associative processor as possible. With a device having every capability
described in Section 2 one could apply the full range of associative techniques to each
problem in order to determine realistic design criteria (in terms of required associative
capability) for practical, special purpose devices to be built in the future. In addition,
such a device would represent a prototype general purpose associative processor.

2

NRL REPORT 6961

-Against this background, we have considered many associative processor (AP) de-
signs to solve a large number of existing naval requirements. To meet all of these re-
quirements at a reasonable cost we propose a design for a solid state, variable syllable,
variable instruction AP whose basic element (the associative chip) combines as many
one-cycle searches and operations as possible (nine total), including a multiwrite and
multiadd (both keyed on the current state of the response store, i.e., on the results of
previous searches). Compound searches and complex operations would be controlled by
microprograms located in a high-speed solid state (flip-flop) memory. Examples include
adding two syllables within all words and storing the result in a third syllable, multiply-
ing all words by the comparand, etc. (see Section 4.7). Macroinstructions (one AP micro-
program corresponds to one macroinstruction) might be delivered to the AP by the main
processor on an instruction-by-instruction basis. Alternatively (or in addition), com-
plete AP programs could reside locally with respect to the AP. In the latter case locallystored AP routines could run independently while the main processor continues to work
on nonassociative tasks. For example, in an air traffic control application self-contained
AP programs periodically initiated by the main processor might include collision avoid-
ance checks, flight planning routines, etc.

4. Description of the AP

Those parts of the AP that combine to produce its associative properties are shown
in Fig. 1. The syllable definition register (SDR), comparand (COMP), search command
one (SCI), search command two (SC2), multioperation register (MOR), associative mem-
ory output buffer (AMOB), and the associative memory address register (AMAR) are
seven (flip-flop) registers under the control of a microprogram processor (MPP) that

SEARCH COMMAND
MULTI-ADD COMMAND

SDR

I COMP I

I I

Sc 2
I SC I

I I I
I SC2

r~~
I MOR

MULTI-WRITE COMMAND
WRITE COMMAND
ADD COMMAND l |
READ COMMAND
RESET RB i m IF

RS I AM

I AMAR I _ N

I

F~~~~~ ~AMOB l___

Fig. 1 - The basic components

3

SHORE AND POLKINGHORN, JR.

combines with the associative memory (AM) to form the AP. Strictly speaking, the in-
clusion of the MPP does not increase the associative capabilities of the AM, since the
seven registers in Fig. 1 could be directly under the control of the main processor.
However, including the additional level of control represented by the MPP, as indicated
in Fig. 2, enables frequently used complex associative operations to proceed in parallel
to the continuing operation of the main processor. In such a configuration, an associative
macroinstruction passed to the MPP from the main processor would initiate a micropro-
gram located in the MPP. Also, this configuration enables us to exploit the speed of the
AP by operating the MPP-AM combination with a cycle time independent of that required
by the main processor.

MAI N
PROCESSOR

(GP
COMPUTER)

Fig. 2 - System organization

|AP -I

FAS.~TIV~

L-_ - __

In what follows, the term "word-slice" refers to the contents exposed by any hori-
zontal cross section through the right-hand side of Fig. 1. Similarly, a "bit-slice" re-
fers to the contents exposed by a vertical cross section through Fig. 1.

4.1 The Syllable Definition Register

For many applications it is convenient to store a complete set of parameters {P.}
in each AM word. For example, in an air traffic control application, each AM word
might represent one aircraft by a set of parameters such as identification number, posi-
tion, time, airspeed, heading, altitude, etc.

To take a general example, suppose that we are using a sixteen-bit machine and have
stored five parameters in each word according to the following specification:

bits 1 - 3:

bits 4 - 5:

bits 6 - 8:

bits 9 - 11:

bits 12 - 13:

PI ,

P3

P4
P5

Bits 14 through 16 are taken up by the response store (RS), the operation of which will be
described in Section 4.3. Bit positions are labeled from right to left (as shown in Fig. 3).
We note that in an actual application both the AM word length and the parameter specifi-
cations would probably be considerably longer.

4

NRL REPORT 6961

14 12 9 6 4 1
RS | P5 | P4 | P3 |P 2 | Pi I

Fig. 3 - AM word format for
the example in the text

Addition and nonequal comparisons (less than; greater than) require indication of the
intrasyllable limits. This is the function of the syllable definition register (SDR), which
should contain a 1" in the lowest numbered (least significant) bit of each syllable. For
the preceding example, the SDR would be loaded as in Fig. 4.

XXX I0 0 01 I 00 I o o 1 0 0 01 I o I I

Fig. 4 - SDR configuration for
the example in Fig. 3

There are several reasons for including this variable (or floating) syllable capability.
First, since we can allocate syllables according to the requirements of the specific ap-
plication, we are able to make efficient use of the AM word-slice length. Second, since
the SDR is under software control, we can go a step further and allocate syllables on a
real time basis as a function of the data being processed. Finally (as will be seen in
Sections 4.7.1 and 5.1.2.5) special purpose manipulation of the SDR results in a marked
increase in the overall associative capability of the AP.

4.2 The Comparand

The comparand (COMP) contains the reference word for an associative search. Also,
during a multiadd operation the COMP is the addend and during a multiwrite operation
the COMP acts as the input buffer. The exact nature of each of these operations is con-
tingent on the contents of the other control registers.

4.3 The Search Command Registers and the Associative
Search Operation

When a search command is given (by raising a line from the MPP) every word in the
AM is simultaneously compared to the COMP. Each of these comparisons is performed
in a bit parallel fashion. There are four basic types of searches, each of which can be
specified for any sequence of bits (including a sequence of one). These are:

1. greater than the COMP,

2. less than the COMP,

3. exactly matching the COMP,

4. don't care.

The selection of one of these is determined, on a bit-by-bit basis, by the contents of
the SC registers. The code for this specification is given in Fig. 5. A contiguous series
of either type 1 or type 2 (in the list above) carries the implication that the specified se-
ries of bits is to be considered as one (numerical) value in each AM word-slice for

5

SHORE AND POLKINGHORN, JR.

Fig. 5 - Search specification code

purposes of the search. In the event that such a series crosses an intrasyllable division,
the SDR automatically splits it into two separate series. If a particular word in the AM
satisfies all criteria specified by the COMP, SCI, and SC2, the word-slice is said to re-
spond, and a bit is set in the response store (RS) section of that word-slice. The RS is a
section of each AM word-slice used to store information regarding the search history of
that word-slice. We note that no SDR specification is needed for those bits in RS.

During an associative search operation, the RS section of each AM word-slice is
also compared to the corresponding COMP bits. However, there are only two RS search
types, namely, exact match and don't care, instead of the four types available to the
non-RS section of the word-slice. The search specification code for the RS is given in
Fig. 6.

Fig. 6 - Response store search specification code

In a particular search, requiring one or more matches in the RS section is equiva-
lent to including the criteria of a previous search or series of searches. It is this capa-
bility that enables us to build complex search types (e.g., between limits) from our basic
set.

The number of bits in the RS is a hardware variable as far as the present design is
concerned. While two bits will suffice to accommodate any length series of ANDed
searches, each search being conditional on the results of the previous search, additional
RS bits are required if we also wish to maintain a record of when (i.e., between which
searches) each word-slice ceased to satisfy a continuing series of searches. Thus, the
RS should be made long enough to record the longest expected series of the latter type.
Note that if only a count of the number of satisfied searches is required, this can be
accomplished by using a syllable within each word-slice.

SC SC2 1 TYPE OF BASIC SEARCH

O 1 GREATER THAN THE COMP

1 0 LESS TEAN THE COMP

1 1 EXACT MATCH TO THE COMP

O 0 ANYTHING WILL DO (DON'T CARE)

SC1 SC2 TYPE OF BASIC SEARCH

o 1 DON'T CARE

1 0 DON'T CARE

1 1 EXACT MATCH TO THE COMP

O 0 DON'T CARE

6

NRL REPORT 6961

As was mentioned previously, when a word-slice responds to a particular search, a
bit is set in the RS section of that word-slice. The particular bit to be set is specified
for each search by the occurrence of the control register pattern reproduced in Fig. 7.
The intersection of this bit-slice with every word-slice defines the response bit (RB) for
the search being performed. We note that this combination of a "1" in the COMP with a
"don't care" specification would not otherwise be useful.

COMP 11
Fig. 7 - Specification of response bit SC1 0

SC2 0

The extreme-left-hand bit in the RS is called the response resolution bit (RRB). Its
output is connected to the response resolution network (RRN). The RRN is designed to
supply the microprogram processor (MPP) with a list of addresses of those AM word-
slices that have a "1" set in the RRB. Thus, whenever we are actually interested in
working with those word-slices responding to a particular search, we should specify the
RRB as the response bit for that search.

To clarify these procedures let us return to our example. Suppose the AM is filled
with information as in Fig. 3. Suddenly we become interested in that set of AM words
satisfying

A < P3 < B,

C < P 4 < D,

E < P < F.

If, for example, P3 and P4 are spatial coordinates and P. is time, then this is equivalent
to specifying a particular two-dimensional area and a specific time period. Suppose, in
addition, that the code for P2 has been constructed in such a way that all AM words of
present interest will have a "1" in bit 5 of Fig. 3. For example, if P2 were used to indi-
cate aircraft type in an ATC application, bit 5 might distinguish between airline and non-
airline traffic.

Loading the control registers as in Fig. 8, we raise the associative search line to
the AM. As a result, bit 14 is set in every word with bit 5 equal to "1" and with

P 3 < B,

P4 > C,

P5 < F.

Reloading the control registers to correspond to Fig. 9, we search again. The
search criterion that bit 14 be equal to "1" restricts the set of possible solutions to
those words in AM that have already satisfied the search criteria defined in Fig. 8.
Thus, as a result of our second search, bit 16 (the RRB) is set in every word that satis-
fies our previous search and the criteria:

7

8

SDR

COMP

SC I

SC2

MOR

SDR

COMP

SC I

SC2

MOR

SHORE AND POLKINGHORN, JR.

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
X X XI 0 0 | o I 10 01|l0100 I 1 l I

0 1 - F-1- C B H I IX X I X X|

1 1 1 I I I 1° 1° 1° I I I I I l I l 1° 1°0 1 1 I1010111110101 11101000

ixixixixixixixixixixixlxlxlxlxl~x

Fig. 8 - Control register configuration
for the search example

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
lX X IX 1° 1 110 I 1l 0 1° 1 1° 1° I

0 I- F D IA- X I XI X XI XI

olo 1 , 1 1111°l 111 11°1°1°T
x0x01 1 x1101010111100000

ixiixxllx XlX XlX XlXlX X X

Fig. 9 - Control register configuration
for the search example

P3 > A,

P4 < D,

P5 > E.

This combination is equivalent to our original specification. The RRN now supplies
the MPP with the addresses of the responding AM words. The total time required to set
the RS according to the above criteria is only two AM cycle times (independent of AM
size) plus the time it takes to fill the COMP, SC1, and SC2 before each search. This can
be reduced to one cycle time by doubly listing each parameter to allow simultaneous
comparison of both the upper and lower limits at an obvious increase in hardware cost.

Of the four basic search types (listed in Fig. 5) we note that only the "greater than"
and "less than" search types depend on the contents of the SDR. The exact nature of this
dependence is best explained in connection with the digital design of the associative chip
(and will be explained in Sections 5.1.2.3 through 5.1.2.5). We mention, however, that the
analysis of this dependence results in the addition of two basic search types: less than
or equal, and greater than or equal, resulting in a total of six basic search types.

4.4 The Multioperation Register

The multiwrite and multiadd operations are symmetric in tWo respects. First, when
either is initiated, those bits in the COMP, SCI, and SC2 that correspond to the RS (bits
14 through 16 in our example) search the RS with the search specification code of Fig. 6.
The operation is then executed for those word-slices responding to this RS search. Thus,
like the associative search, the two multioperations can be conditioned on the results of
any previous set of associative searches.

NRL REPORT 6961

The second symmetry of the multioperations concerns the multioperation register
(MOR). A write or add operation for any word-slice involves that word-slice and por-
tions of the COMP, in particular those bits of the COMP which have a "p1" in the corre-
sponding bit of the MOR. Those COMP bits with a "0" in the corresponding MOR bit are
ignored during the multioperation.

We note that the search portion of either multioperation does not result in the setting
of an RS bit (the RB). This is because the RS search does not extract any additional in-
formation from the AM.

4.4.1 The Multiwrite

In most cases the multiwrite operation is used to copy certain portions of the COMP
simultaneously into every word in AM that has satisfied a particular combination of pre-
viously executed searches. If a particular word-slice satisfies the RS search criteria,
each bit of the COMP which has the corresponding MOR bit set to "1" is copied into the
word in the AM. Those bits in the AM which correspond to bits in MOR set to "0"1 are
left unaltered. This procedure includes the RS section of every word-slice.

Returning to our previous example, suppose that we wish to reset Pi to zero in all
words selected by the searches described in Section 4.3. This is accomplished by load-
ing the control registers as in Fig. 10 and raising the multiwrite line.

Including the RS in the multiwrite operation implements a convenient, one-cycle
clear-response-store operation, depicted in Fig. 11.

16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
SDR - X X 0 01 O I | O | I | 1 | |i SDR X X X X X X X X X X X X X X X X

COMP I|O|O|X|X|X|X|X|X|X|X|X|X|o COMP OO O X X X X X X X X X X X X TX]

SC L IO010000000000000 SC Lo I 0 I 0 I O I QXXXXX I X Xx Ix Xx Ix X Ix I

SC2 O1 101O00lOTO000100010101010] SC2 IO OQ IX XX IXX IX I X IX x IX I

MOR | O O O O OO°l°l°l°O O |°| |i I MOR I I I | | | | | | | |

Fig. 10 - Control register configuration Fig. 11 - Control register configuration for
for the multiwrite example a one-cycle clear-response-store operation

4.4.2 The Multiadd

When the multiadd line is raised, the COMP (masked by the MOR) is simultaneously
added to each word responding to the RS search (the addition itself is bit parallel). Indi-
vidual syllable integrity is maintained by operation of the SDR, which inhibits carry
propagation across each intrasyllable division. The addition does not include the RS.

Continuing the above example, instead of performing the multiwrite described in the
last section, we might decide to replace P and P 5 according to

P +1 -PI

P5 + 5 - P5

9

SHORE AND POLKINGHORN, JR.

in all words selected as described in Section 4.3, where C1 and C. are constants. This
may be accomplished by loading the control registers as in Fig. 12 and raising the multi-
add line.

In general, we can perform 2s complement integer arithmetic on a syllable-by-
syllable basis (as defined by the SDR). If required, overflows can be detected by an
algorithm similar to that used with a conventional 2s complement adder. In the AP this
detection can be performed simultaneously for every syllable in every word-slice.

4.5 Conventionally Addressed Operations

The associative memory (AM) can also be accessed by means of the AM address
register (AMAR) and a conventional address selection network. When the read line is
raised, that AM word-slice whose address is located in the AMAR is gated (in parallel)
onto the AM output buffer (AMOB). When the write line is raised, the comparand (COMP)
is written into the AM word-slice whose address is located in the AMAR. Finally, when
the add line is raised, the COMP is added (in parallel) to that AM word-slice whose ad-
dress is located in the AMAR. In both the add and the write operation, the COMP is
masked by the MOR as described in Section 4.4.

4.6 Simultaneous Operations

The AP has been designed so that many combinations of the operations that have
been described individually can be performed simultaneously (from a programming point
of view). Of the six individual operations (corresponding to the six lines into the AM)

there are (6) = 15 possible combinations of two operations. To perform two operations

simultaneously, the two corresponding lines into the AM are raised.

Defining each of the 15 combinations as one binary operation, we may state that
every binary operation is possible, in the sense that unique and unambiguous results are
obtained when any two lines are raised simultaneously. Of course, not all of the binary
operations are equally useful. In general, the most useful will be those binary operations
which are a combination of two "orthogonal" single operations. Two operations may be
said to be "orthogonal" if they are functionally unrelated, i.e., if the two have no effect
on each other.

The orthogonality relationships between the six single AM operations are expressed
in matrix form in Fig. 13. That the matrix is valid will be apparent after we present the
digital design of the AM, starting in Section 5. For the present, however, the matrix
may be understood by applying the following principle: Single operations are of two types,

SDR

COMP

SC I

SC 2

MOR

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
xixixio 01 oo1001 1 1 1°
lo- u -5X Ix x xX Ix xxx CI
o10o0 XIXx IXX XI X Xx IxXX IX

0I 1 XIX IXT 0IxIx XX X IX x I

I-10llo10 1 1 olo01010 l0 0101010 1 111 1

Fig. 12 - Control register configuration
for the multiadd example

10

NRL REPORT 6961

Fig. 13 - Binary operation orthogonality matrix; "1" implies or-
thogonality, "?0"? implies nonorthogonality, and "*" implies orthog-
onality if and only if the word-slice selected by the AMAR is not
one of those responding to the RS search of the multioperation

m 0: C C M M

m ; 0

0 -

READ I - I I I I I

ADD I - I * 0 I

MULTI-ADD I I - 0 * I

MULTI-WRITE I * 0 - I I

WRITE I 0 * I - I

SEARCH I I I I I -

those that change the (non-RS) contents of AM and those that do not. If the contents of a
word-slice are to be changed (as in a write or add), they change only on the trailing edge
of the next clock pulse. Operations that do not change the contents operate. on the con-
tents as they are before the next clock pulse. For example, the read and write are or-
thogonal. At the end of the read/write binary operation (i.e., after the next clock pulse)
the COMP will have been written into the selected word-slice and the AMOB will contain
the contents of the word-slice as they were before the COMP displaced them.

Clearly, the only operator combinations which are not orthogonal are those in which
both operations attempt to change the contents of the same word-slice. This principle is
reflected in Fig. 13. The only pairs that are not orthogonal are those that attempt both
to write and to add into the same word-slice. Later, it will be clear that the result of
such an attempt will always be the logical OR of the COMP and the arithmetic sum of the
COMP and the selected word-slice. As such, it is still a perfectly valid, if seldom use-
ful, operation.

From Fig. 13 we see that the associative search is orthogonal to both multiopera-
tions. The results of the two possible binary operations are slightly different from what
one might expect from consideration of the individual operations. This change has been
incorporated into the design so that the two operations (search/multiwrite and search/
multiadd) would be more useful. We recall (Section 4.4) that, when executed individually,
the two multioperations select word-slices on the basis of their response to the RS search.
When either of these multioperations is part of a binary operation that includes the asso-
ciative search, this procedure is modified so that word-slices are selected (for the add
or write) on the basis of their response to the associative search. If an R3, has been
specified (as in Fig. 7), this bit will be set by the binary operation, just as described in
Section 4.3. As a result of this modification, the two binary operations can be used to
replace the often used sequence of their component operations. For example, the se-
quence comprised of the search of Fig. 9 followed by the multiwrite of Fig. 10 (see Sec-
tion 4.4.2) can be replaced by one simultaneous operation. The registers would be loaded
as in Fig. 14, and both the associative search and the multiwrite lines would be raised.

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
SDR |X X X 0 0|11 I I 0 I 0 I 0 I

Fig. 14 - Control register configuration for the COMP I 0 I -E- D 1 A- I X | X 0 0 0
simultaneous operation combining the opera-
tionsdescribedbyFigs. 9 and lo SCI 0I 0 0 i I I0lolol l olol

SC2 ololi1 lololol10lololololo
MOR 0 0 0 0 0 0 0 0 0 0 0 0 l ll

11

SHORE AND POLKINGHORN, JR.

Suppose a binary operation is composed of the two single operations 01 and 22
which normally execute in times t and t 2 respectively. In Section 5.3.6 it will be shown
that the binary operation will require at least as much time as the larger of t or t2 but
never as much as five gate delays more than this. Therefore, the inclusion of binary op-
erations gives an additional processing speed advantage to the AP.

An analysis similar to the above could be carried out for all combinations of three
primary operations. In general, there are

n=6

E() 26 (1)n
n=0

possible simultaneous AM operations of any number that can be arrived at by the above
procedure (one might have to consult the digital design to determine the outcome of some
of these). This suggests that one six-bit syllable in each instruction of the MPP be re-
served as an AM instruction code. The output of the corresponding flip-flops of the MPP
instruction register could be connected directly to the AM control lines. Other micro-
program syllables would specify (directly or indirectly) the control register contents for
that AM instruction, etc.

4.7 Complex Arithmetic Operations

In Section 3 we indicated that the flexibility of the AP would be greatly increased by
making complex arithmetic and logical operations available as stored microprograms in
the MPP. To illustrate this capability, we offer the following four examples.

4.7.1 Logical Operations

The three most often used logical operations -AND, OR, and EXCLUSIVE OR - are
easily implemented as AP operations by proper manipulation of the control registers.

If A and B are two binary numbers and we wish to replace B according to

AORB B,

we may proceed as follows: For each bit in A, if that bit equals "1" we write this value
into the corresponding bit in B. If a bit in A equals 'IO", we leave the corresponding bit
in B unaltered. This procedure modifies B so that it is now equal to the logical OR of A
and B. Thus, if we load both the COMP and the MOR with A and then perform a multi-
write, those word-slices selected by the RS search are modified to become the logical
OR of the COMP and the word-slice. To take a particular example, let A = 110010. We
load the control registers as in Fig. 15 and raise the multiwrite line. As a result, the
last six bits of each word-slice selected by the RS search now represent the logical OR
of A and their previous contents. The RS search criteria have been left blank in Fig. 15
to indicate athat the word-slices can be selected for the OR operation according to any
specification

Continuing the, above example, suppose we wish to replace B according to

A AND B B.

We may proceed as follows: For each bit in A that equals "0" we write this value into
the corresponding bit in B. For those bits in A that equal t1it', we leave the corresponding

12

NRL REPORT 6961

16 15 14 13 12 1 1 1 0 9 8 7 6 5 4 3 2 1
SDR X X X X X X X X X X X X X X I

COMP ||||X|X |X|X |X|X |X 110010 °}O ll

MOR 0 0 0 0 0 0 0 o I 0 0 I 0 | 1 0 I 0 1 | |

Fig. 15 - Control register configuration
for the logical OR example

bit in B unaltered. This procedure modifies B so that it now represents the logical AND
of A and B. We can accomplish this in the AP by loading the COMP with A, loading the
MOR with the bit-by-bit complement of A, and raising the multiwrite line (Fig. 16). As a
result, the last six bits of each word-slice selected by the RS search now represent the
logical AND of A and their previous contents.

Finally, suppose we wish to replace B according to

A EXCLUSIVE OR B) B.

Since, for any two bits, their EXCLUSIVE OR is simply the sum of the two bits, we may
accomplish this logical operation by loading the control registers as in Fig. 17 and rais-
ing the multiadd line. Note that the SDR specification results in the inhibition of all
carries between bit-slices. As a result, the last six bits of each word-slice selected by
the RS search now represent the logical EXCLUSIVE OR of A and their previous contents.
We note that since both the AND and the OR involve an AM write operation, they may be
performed simultaneously on different syllables, specifying each syllable according to
the above.

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
SDR |X|X|X IX|X X I X X i X X X X X X X XX SDR X X X X X x X X I I I II I I I I I I

COMP I I I | X I X X X X 1 0 0 0 I | I | COMP | I I X X X X X |X X |I I100 I 1 0

SC I I I l IXIXIX XXIX jXjXj-XjX|X| SC I l I l IX1X1X1X1X1X1X1X1X1X1X1XX}

SC2 XXXXXXXXXXXXX SC2 XXXXXXXXXXXXX
MOR lo lo o I 0 I 0 I 0 lo I | I | I | l | I 1 MOR I0 0 0 0 0 10 0 lo I 0 | I | 11 I I 1

Fig. 16 - Control register configuration Fig. 17 - Control register configuration
for the logical AND example for the logical EXCLUSIVE OR example

4.7.2 Multiplication of All AM Words by the Comparand

The multiplication of all AM words by the COMP is based on the algorithm flow-
charted in Fig. 18. Since all multiadds can be conditioned on the results of any combina-
tion of previous searches this capability is already built into the multiplication (specifi-
cally, at operations 3 and 5 of Fig. 18). This algorithm will work for multipliers that are
nonzero in one syllable only (there is no preferred syllable).

13

SHORE AND POLKINGHORN, JR.

4.7.3 Addition of Two Syllables Within
Every Word

N 0 i The addition of two syllables within every word is

| - based on the fact that the addition of two n-bit words, A and
+ t B, may be performed in a serial fashion by expressing one

2 { N N+I word in the form

n-i
3 IF1 A =2E ci2i (2)

§EARCH FOR
3 I ON BIT

SLICE N i=O
(EXACT
MATCH)

l and then adding A to B on a term-by-term basis:

B, LEFT n-1
SHIFTED

4 N-I BITS, A+B = B+ E ci2 (3)
GATE D
ONTO COMP i=O

Suppose we wish to add the syllable of bits 3 through 5 to

MULTI -ADD the syllable of bits 8 through 12 within every word-slice of
5 TO THOSE AM. As our first step, we load the registers as in Fig. 19

WITH THE RB and raise both the associative search and the multiadd lines.
SET For each word-slice this operation adds a 1" to B if A has

a t1t" in its least significant bit. Next, the registers are
loaded as in Fig. 20 and the operation is repeated. This
time, a "10" (binary) is added to B if A has a t1"t? in its

6 N < M second bit. The procedure is iterated for each bit in A.
N: 5 /This completes the addition according to the algorithm de-

NaM scribed.

STOP We note that adding two syllables and storing their
sum in a third syllable (A + B * C) can be easily accom-
plished by writing zeros into C, adding A to C, as above,

of ail AM words by B M and then adding B to C. Since, throughout, we may have
is equal to the width, in required that an RS bit be set (e.g., bit 14) this entire pro-
bits, of the largest num- cedure is word-slice selective according to the results of
ber in AM to be multi- previous searches.
plied by B.

4.7.4 Multiplication of Two Syllables Within Every Word

The algorithms of the previous two sections can be combined, enabling us to multiply
two syllables together and store their product in a third syllable (A-B > C). Specifically,
operation 5 in Fig. 18 is replaced by the algorithm of the last section. The entire proce-
dure may be described as follows: To begin with, zeros are written into syllable C. The
lowest order bit-slice of syllable B is copied into an RS bit-slice (by performing an exact
match search with a "1" in the COMP bit corresponding to the lowest order bit-slice of
B). Syllable A is added to C (as in the last section) in every word with the RB set. Next,
the second lowest order bit-slice of syllable B is copied into the RS bit-slice. Syllable A,
left shifted by one bit, is added to C in every word with the RB set. Syllable A is shifted
left, virtually, by one bit merely by displacing by one bit the correspondence between bits
in A and C as specified in the algorithm of the last section. Specifically, the sum of A
(left shifted by one bit) and B is given in the notation of Eqs. (2) and (3) by

14

NRL REPORT 6961

B -I HA-- 1- B I ID -

16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

SDR XXXIXlOlOlOlOllIXIXIO OII XIX SDR m XXO|O|O|00 I XXOOI XX

COMPXXXXOOOOIIXXXXIIXX COMPXXXX o I XXX XX
SC II010101-0101010101010 1 1010 II SCI 10101010101010101010101 1 11

SC2 0 0 0 0 0 0 0 0 0 0 0 0 0|IO 0 SC2 0 0 101010110101 000 0 00011101

MOR |0100101III 00I000IOIO01010IO MOR I 0 0 0 0 1 I 1 lO OQO OQO

Fig. 19 - Control register configuration Fig. 20 - Control register configuration
for the first step in addition of parame- for the second step in the addition initi-
ter A to parameter B within all AM words ated by the operation described by Fig. 19

n-1
A (left shifted by one bit) + B = B + E c 2' ' (c 1 0) (4)

i=O

Thus, in Fig. 19, the correspondence would be between bit-slices 3 and 9, instead of be-
tween bit-slices 3 and 8 as shown for the unshifted example.

As in all of the AP operations that we have been describing, perhaps the most sig-
nificant advantage lies in that their execution times are all independent of AM size. That
is, whether we multiply only one set or many thousands of sets of syllables together
bears no relation to the operation time. In addition, the operations involve simultaneous
logical word-slice selection, permitting operation only on those words that satisfy a
given set of criteria. This flexible logic capability is available without any penalty in
execution time.

We note that the logical operations described in Section 4.7.1 can also be performed
between syllables within the same word-slice by a method analogous to that of intersyl-
lable addition. Adding these to the other intersyllable operations described, we obtain a
set of operations that actually result in a small processor within every word, thereby
giving the AP unprecedented logical and computational power.

5. Design of the Associative Processor

The key design element of the AP is the integrated circuit chip which forms its basic
component. Each chip contains an integral number of AM bits. The AM is constructed
by horizontally and vertically stacking this chip. The RS section can be formed by adding
external logic to the basic chip and stacking this combination. Alternatively, the RS can
be implemented as a separate integrated circuit chip.

The number of bits per chip N is a variable in the following design. As N increases,
so does the number of gates and control lines per chip. The limit can be determined on
purely technical grounds.

5.1 The Chip

The design-t le presented requires 36N + 2w gates and 6b + 9w + 3 control lines
per chip, where i is the number of bit-slice sections, w is the number of word-slice
sections, w is the number of word-slice sections, and N = bw. As the number of gates

15

SHORE AND POLKINGHORN, JR.

available in a particular technology increases (MSI and LSI), it becomes increasingly
important to optimize b and w so that the total number of control lines is minimized.
This may be accomplished by setting w = 2b/3.

To simplify the following discussion, we consider a chip which contains a number of
contiguous bits from the same word-slice (that is, w = 1 and b = n). A schematic of one
bit in this associative chip is shown in Fig. 21. The various control lines are summa-
rized in Fig. 22. (The clock, power, and ground lines are not included in Fig. 21.)

The circuit in Fig. 21 can likely be further minimized. Also, in terms of another
canonical logic operation (NOR) or some technologically possible combination of opera-
tions, it may be possible to arrive at lower gate and control line requirements. There-
fore, it is convenient to specify the chip design as a set of Boolean equations. Such a
specification is given in Appendix A.

5.1.1 Addition

A NAND logic implementation of the addition scheme is depicted in Fig. 23. The
horizontal dashed lines represent limits of the chip. The dotted vertical lines represent
the division of the chip into individual bits. Only one bit is shown in Fig. 23. The ex-
treme left and right bit division lines become chip limits as well, with the width in bits
to be determined as was discussed.

Fig. 21 - NAND logic diagram of one AM bit

16

NRL REPORT 6961

NO. DESCRIPTION OF THE LINE Occurrence

1 complement of the SDR (input) once per bit-slice

2 from COMPARAND once per bit-slice

3 from SC_ once per bit-slice

4 from SC2 once per bit-slice

5 connection from read bus once per word-slice

6 flip-flop output when read bus is high once per bit-slice

7 connection from write bus once per word-slice

8 connection from add bus once per word-slice

9 carry from bit n - 1 once per word-slice

10 carry to bit n + 1 once per word-slice

11 set all remaining responses in syllable (in) once per word-slice

12 set all remaining responses in syllable (out) once per word-slice

13 response line from more significant bits once per word-slice

14 response line output once per word-slice

15 MOR input once per bit-slice

16 clock (not shown) once per chip

17 power (not shown) once per chip

18 ground (not shown) once per chip

Fig. 22 - Control lines of the circuit in Fig. 21

17

SHORE AND POLKINGHORN, JR.

Fig. 23 - NAND logic diagram of the
AM addition circuitry (one bit shown)

The square box within the chip represents a J-K clocked flip-flop (six gates have
been allowed for this flip-flop). The truth table requirements for this flip-flop are given
in Fig. 24. The states J K, Q., and Q, (output and its complement) are states at the
leading edge of the clock pulse. Q changes to Q,+, at the trailing edge of the clock
pulse. Q, remains unchanged at least until the trailing edge of the next clock pulse.
The use of a clocked flip-flop eliminates all race-time problems and is the source of our
ability to include so many functions on one chip. Operationally, race-time problems are
eliminated if we make sure that the next clock pulse after the initiation of an operation
does not come before all J-K inputs have reached a steady state. This procedure may
be compared to that of measuring the water level in a complex plumbing system. After
opening or closing a set of valves that are part of system, level ambiguity is eliminated
if we do not make our measurement until enough time has elapsed for the water to reach
its natural level.

Addition is keyed to the state of the add bus. The bus will be high if this word-slice
has been selected for addition (either by conventional addressing or by response to the

J 0 } 0]

K 0 1 °

Qn 1 Qn 6Qn ° I

Fig. 24 - Truth table for the J-K flip-flop

18

NRL REPORT 6961

RS search of the multiadd operation). If the add bus is high, the COMP (masked by the
MOR) is added in a bit parallel fashion to the AM word-slice involved. The input from
the MOR inhibits the add bus input unless, as required by Section 4.4, the MOR bit is "1"
(at point A in Fig. 23). The key to the add operation is the logical EXCLUSIVE OR:

a b = ab + a b .

If an and b are the contents of the nth bit in the COMP and AM word-slice respec-
tively, let sn be the contents of this bit in AM after the next clock pulse. Then,

Sn = (an ,, bn) C- X

where c n- l is the carry from bit n - 1. The carry (from bit n to bit n+ 1) is given by

c = anbn + Cn-1 (an bn)

A truth table for all values of an, bn, and c n is given in Fig. 25. The reader may verify
that the circuit in Fig. 23 satisfies this truth table if the add bus and the MOR input are
both high.

Fig. 25 - Addition truth table

Recalling that the syllable definition register (SDR) contains a "1" in the least sig-
nificant bit of each syllable, we see that the SDR acts to inhibit the propagation of a carry
from the end of one syllable to the beginning of the next. Consequently, any syllable over-
flow will result in loss of the most significant bits.

5.1.2 The Associative Search

Each type of associative search is performed in a bit parallel manner. The "exact
match" and "don't care" searches are bitwise independent; i.e., for each bit the search
depends on the contents of that bit only. The "greater than" and "less than" searches
are similar to the addition (described in the preceding section) in that the outcome of the
search depends to some extent on the contents of the other bits in the syllable. (Addition
depends on the less significant bits. These searches depend on the more significant bits.)

Referring to the one-bit schematic in Fig. 21 (Fig. 23 corresponds approximately to
the upper-right-hand corner of Fig. 21), the state of the line at the bottom left marked
"R" indicates the search response of this bit. If R is high, this bit satisfies its particular
search criterion. If it is low, the criterion has not been met. The response of the pre-
vious bit (the one on the left) is connected to input line 13. Clearly, line 14 will be high
if and only if both line 13 and R (response of this bit) are high. If these conditions are
not satisfied, and line 14 is low, every such line 14 in all bits standing to the right will
be forced to the low state. Hence, line 14 from bit 1 of the word-slice will be high if and
only if every bit in the word-slice has satisfied its search criterion.

a n C -I Sn Cn

o 0 0 0 0

I 0 0 1 0

1 0 0 II I I I I

o I 0 I 0

o 1 I 0
o 0 I I 0
I I 0 I 0

19

SHORE AND POLKINGHORN, JR.

To avoid unnecessary gate delays, in actual practice the two gates near R that are
surrounded by the dotted box should be included only in the extreme-right-hand (least
significant) bit of each chip. If each chip is to contain N bits, then the first gate within
the dotted box would be an (N+ 1)-input NAND gate, one input for every R line in the chip
plus one from output line 14 of the previous chip (input line 13 of this chip).

5.1.2.1 The "Don't Care" Search

If the "don't care" criterion has been specified, the output of gate D (Fig. 21) will be
in the low state. Following the line down we see that this condition will force R high, as
required.

5.1.2.2 The Exact Match Search

Since our method of addition involves the bitwise logical EXCLUSIVE OR of the
COMP and AM, it is advantageous to make as much use of this logical function as possi-
ble. If A and B are two single-bit binary numbers, we note that A B is zero if and
only if A = B. Thus A B = 1 if and only if A = B. In Fig. 21 the state of point E
corresponds to the EXCLUSIVE OR of the COMP and the bit under consideration. Trac-
ing all inputs to gate M (lower left), we see that if the complement of the EXCLUSIVE OR
is high and if the exact match code has been specified, then the output of gate M will be
low and R will be forced high, as required.

5.1.2.3 Search for Larger Elements

Whether an AM syllable is larger than the corresponding syllable in the COMP might
be determined as follows: We look first at the most significant bit of the syllable in AM.
If this bit is larger than the corresponding bit in the COMP, we know that the search has
been successful and that we can disregard the remaining bits of the syllable. But if the
bit in the COMP is larger, then we already know that the syllable does not satisfy the
search. If the two bits are equal, we must repeat this procedure for the next most sig-
nificant bit, etc. If every bit is equal, then the two syllables are equal and the AM syl-
lable does not satisfy the search, since it is not greater than the corresponding syllable
in the COMP.

The algorithm used in the associative chip is derived from the preceding, with modi-
fications that enable the comparison to be made in a bit parallel manner. Thus, the algo-
rithm flow-charted in Fig. 26 is executed simultaneously in every bit. This algorithm
makes use of the above procedure and the fact that if R remains low in only one bit the
entire word-slice will not satisfy the search.

To implement this algorithm we again make use of the following: If A and B are both
single bit binary numbers we note that

A'B = 0, if A > B,

1 otherwise.

The output of gate G in Fig. 21 is equivalent to this function with A = AM bit and B =
COMP bit, if a "greater than" search code has been specified for this bit. Following the
line down, one sees that if the output of gate G is low, R is forced high, as required. In
addition, unless this is the least significant bit of the syllable (indicated by input line 1,
the SDR, output line 12 is forced low. Output line 12 is connected to input line 11 of the

20

NRL REPORT 6961

Fig. 26 - Algorithm for the
"greater than" search

next bit. If line 11 is low, then R is forced high. Output line 12 is again forced low, ifthis is not the least significant bit of the syllable in question. This completes the right-hand branch of Fig. 26. Also, if the AM bit and COMP bit are equal, R is forced high un-less the AM bit is the least significant of the syllable (point). Finally, we see that ifA < B, no action is taken and R stays low (unless a more significant bit has satisfiedA > B). In this manner each branch of the flow chart in Fig. 26 is satisfied.

5.1.2.4 Search for Smaller Elements

The procedure used to, search for syllables in the AM smaller than the correspond-ing syllable in the COMP is exactly symmetric to that of the search for larger syllables.Thus, in Fig. 26 the lefttand right-hand branches are simply reversed. Likewise, the
implementation makes use of the fact that

AB = 0, if A < B,

= 1 otherwise.

where again A is an AM bit and B.is the corresponding COMP bit. The output of gate Lis low if this function is zero and if the "less than" code has been specified for this bit.Tracing the output of gate L we see that R is forced high if this output is low, as required.

21

SHORE AND POLKMNGHORN, JR.

5.1.2.5 The SDR and Its Use in the Associative Search

A complete understanding of the operation of the associative chip can lead to many
sophisticated programming techniques through careful manipulation of the five control
registers. These techniques can be used to increase the flexibility of the AP.

For example, suppose a parameter of interest normally will require not more than
M bits. Let us instead reserve M + 1 bits for this parameter (by means of the SDR) but
use only the M most significant bits of the syllable. Specifically, suppose we reserve
bits 6 through 12 (inclusive) for a six-bit parameter and store the parameter in bits 7
through 12. Now, if we wish to search for all values less than or equal to a particular
value, this may be accomplished by the control register specification in Fig. 27, which
will set bit 14 of responding word-slices.

16 15 14 13 12 1I 10 9 8 7 6 5 4 3 2 1

SDR X X X X 0 0 0 o o o o I 0 I X X X X X

COMP 0 0 I X -VAN U -I X I X I X I X IX I Fig. 27 - Control register configuration for

Sc 0 o 0 I o I I I I I o o I o 0 "less than or equal to" search example

SC2 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0

MOR X X X X X X X X X X X X X X X

If we become interested in a strict "less than" search this may be accomplished by
replacing bit 7 of the SDR with a "1". Clearly, we can similarly introduce the "greater
than or equal to" search. In general, if one extra bit is reserved for every syllable we
can consider these two new searches as part of our basic set. Distinguishing between a
"less than" and a "less than or equal to" or between a "greater than" and a "greater than
or equal to" is accomplished through manipulation of the SDR.

5.1.3 The AM Read

AM read operations are controlled by the read bus of each word-slice. The read
bus is connected to the chip through input line 5. If the read bus is high, the output of
each AM bit is connected to output line 6. External to each bit, output line 6 is connected
to the bit-slice read line. Each bit in the bit-slice is connected in parallel to this line,
which terminates at the bottom of the AM as an input to one bit of the AMOB. When the
read line to the AM is raised the read bus of that word-slice specified by the AMAR is
raised and this word-slice is written in parallel into the AMOB (Fig. 1).

5.1.4 The AM Write

AM write operations are controlled by the write bus of each word-slice. From the
point of view of the associative chip, it does not matter whether the write command was
initiated by a conventional write or a multiwrite.

The write bus of a particular word-slice is connected to each chip through input line
7. If this line is raised, each bit executes the following algorithm: Suppose A and B are
two single-bit binary locations and we wish to write the contents of B into A. Recalling
that A e B = 1 if and only if A • B, we may use the result of this operation (which is in
the chip already) to write B into A by complementing A if A • B, otherwise doing nothing.

22

NRL REPORT 6961

Thus, if the write bus is high and the corresponding MOR bit is "1", the COMP bit is
written into the AM bit (the change, if any, will occur on the trailing edge of the next
clock pulse). In Fig. 21 the circuit implementation may be verified by tracing the input
lines 7 and 15 as well as the line from point E. (The J-K input code is given in Fig. 24.)

5.1.5 Simultaneous Operations

As mentioned in Section 4.6, each of the 15 binary operations is possible, in the
sense that unique and unambiguous results are obtained when any two lines are raised
simultaneously. We now see that this fact derives from use of the clocked J-K flip-flop
(discussed in Section 5.1.1).

The relationships described by the binary operation orthogonality matrix (Fig. 13)
derive directly from the digital design of the associative chip (Fig. 21). For each pair of
single operations that are said to be orthogonal, the data paths followed within the associ-
ative chip are completely independent. For those operations which are not orthogonal,
the individual data paths interact within the chip. For example, according to Fig. 13, the
conventional write and add, as well as the multiwrite and multiadd, are not orthogonal.
It was stated in Section 4.6 that this results from the fact that both operations are simul-
taneously attempting to change the output of the AM bit, perhaps to different values. Re-
ferring now to Fig. 21, we see that individual data paths followed by the write and add
operations interact at the two NAND gates surrounding point J (each data path is one in-
put). Configured as in Fig. 21 these two gates operate so that the J and K inputs are both
high if either the write or the add operation tries to set the flip-flop to "1". Thus, as
mentioned in Section 4.6, the result of binary add/write operation, as well as the binary
multiadd/multiwrite, is the logical OR of the component operations.

5.2 The Response Store

Throughout the design of the associative chip the requirements of the response store
(RS) elements of the AM were kept in mind so that the RS could be constructed by adding
a minimum amount of logic to this chip. The associative chip is thus the primary unit in
the RS, and any integral number of these represent a convenient length for the RS. If a
particular application requires a RS length that does not correspond to an integral num-
ber of chips, the bits left over may be permanently ignored by grounding their input lines
3, 4, and 15. For each bit in the RS section of the word-slice, input line 1 should be per-
manently grounded. This automatically divides the RS into a series of one-bit syllables.

A NAND logic implementation of a two-bit RS (built around a two-bit associative
chip) is depicted in Fig. 28. This design requires the addition of 7M + 23 NAND gates,
where M is the number of bits in the RS. (One expects that the circuit in Fig. 28 can be
further minimized.) As mentioned in Section 5.1, it is useful to specify digital designs
as a set of Boolean equations. A set of equations describing the RS operations is given
in Appendix B. We note that the combination of Appendixes A and B forms a complete
description of the AM design.

Depending upon the size of the AM to be built, the additional RS logic may be indi-
vidually wired for each word-slice or implemented as a second integrated circuit chip.
In the design presented here, only one word-slice section per chip can be modified into
RS. The additional RS logic is of two functional types:

1. Referring to Fig. 23, that section of logic to the right of the associative chip is
independent of RS length and is designed to drive the RS and the various buses according
to the operational requirements described throughout Section 4.

23

SHORE AND POLKINGHORN, JR.

SCI

(i (5 a(i 5 ¢)s(a=; e READ BUS

TWO- BIT ASSOCIATIVE CHIP D RT BUS 19

i)E R@ __= vWR-SLICE RESPONSE 21

Fig. 28 - NAND logic diagram of a two-bit response store

2. The logic network above the associative chip and enclosed in dotted lines appears
once for every bit in the RS. This network arranges the bit inputs to the associative chip
to induce the differences in behavior between a bit in RS and other bits in the rest of the
word-slice, again as described throughout Section 4.

The operation of the additional logic in Fig. 28 is most easily described by consid-
ering individually the various AM operations.

5.2.1 The RS and the Associative Search

We recall that whenever the RS is searched (as part of a number of operations) the
search specification code, given in Fig. 6, is different from the code satisfied by non-RS
sections of the word-slice, which is given in Fig. 5. Since the associative chip was de-
signed to satisfy the latter, one of the functions of the additional RS logic is to effect a
transformation between these codes. By tracing the SCI and S2 inputs of a RS bit (in-
puts in the code of Fig. 6), one can see that chip inputs 3 and 4, what the chip sees as SCI
and SC2, give the proper specification when interpreted as in Fig. 5.

From Section 4.3 we recall that whenever the associative search line to the AM is
raised, a bit may be set in the RS section of every word-slice satisfying that search.
The particular bit to be set is specified by the occurrence of the command register pat-
tern shown in Fig. 7. Referring to the bit-associated network in Fig. 28 (within the
dotted lines), this requirement is implemented by the four-input NAND gate near the top.
Thus, if the associative search line is high and if the control register pattern for that bit
is that of Fig. 7, the MOR input to the associative chip is raised. Unless a write opera-
tion is being performed, the rest of the network inhibits the line from the actual MOR.

24

NRL REPORT 6961

Therefore, if the associative search line is raised, and the write or multiwrite lines are
not, the only bits with a nonzero MOR input (chip input 15) will be those with a control
register pattern as in Fig. 7.

Turning to the RS drive network, we see from Fig. 28 that the results of the RS
search is combined with the response of the rest of the word-slice (output 14 of bit 1) at
gate A. Therefore, gate B will have a low output if and only if the associative search
line is high and the entire word-slice (including the RS) satisfies all search criteria. A
zero output from gate B will result in a raised chip input 7, which is the "write" input of
the associative chip. Thus, any bit with a MOR input of "1" will have the COMP written
into it. Combining this fact with the results of the previous paragraph, we see that the
response bit (RB), as specified according to Fig. 7, will be set in every word-slice sat-
isfying all search criteria, as required by Section 4.3.

5.2.2 The RS and the Multioperations

We recall from Section 4.4.1 that when the multiwrite line is raised alone (or from
Section 4.4.2 that when the multiadd line is raised alone), the COMP, masked by the MOR,
is written (or added) into every word-slice satisfying search criteria on the RS section.
Referring to Fig. 28, gate E will have a zero output if either the multiwrite or the multi-
add line is raised, if the associative search line is not raised, and if the RS portion of the
word-slice satisfies its search criteria (which can be seen by tracing chip output 14). If
the output of E is zero, then the output of gate G is forced high. If the output of G is high
and the multiwrite (or multiadd) line is high, then the write bus (or add bus) is raised as
required in Section 4.4.1 (or 4.4.2).

We note that if the write bus is high, the write input (input 7) of the RS chip is also
raised and MOR the contents are gated into the chip (see gate H). This satisfies the re-
quirement that the multiwrite be extended into the RS. It is this provision that permits
the "clear response store" operation depicted in Fig. 11.

5.2.3 The Conventional Read, Write, and Add

In the conventional read, write, and add operations, word-slice selection is specified
by the AMAR. The address in the AMAR is decoded so that the address select line of the
corresponding word-slice in AM is raised. Any one of the conventional address selection
techniques may be used here. All of them trade off the primary parameters of speed,
fan-in, fan-out, and circuit complexity (diode count). This tradeoff can be optimized only
if one has a small range of memory sizes in mind.

From Fig. 28 we see that if the address select line of a word-slice is raised and
either the write, add, or read line to the AM is raised, then the appropriate bus of this
word-slice (write bus, add bus, or read bus) is forced high. As in the multiwrite, the
write operation includes the RS bits. The read and add operations do not.

5.2.4 The Response Bit Complement Operation

When the RB complement line to the RS is raised, the RB (as specified according to
Fig. 7) of that word-slice whose address is in the AMAR will be complemented. This op-
eration is primarily used to reset the response resolution bit (RRB) as will be described
in Section 5.3.

25

SHORE AND POLIZENGHORN, JR.

Referring to Fig. 28 we see that if the RB complement line and the address selectline are both raised, the bit-associated networks will operate as described in Section5.2.1. Also, input 8 (the add input) will be raised. Since the RB is the only bit with anonzero MOR input, the COMP will be added to the RB alone. As the RS is divided into aseries of single-bit syllables (as stated in the first paragraph of Section 5.2) this results
in complementing the RB.

5.2.5 The RS and Simultaneous Operations

The logic described so far is not capable of handling the situation where either themultiadd or the multiwrite line is raised at the same time as the associative search line(as specified in Section 4.6). The reason for this is that the add (or write) bus can nolonger be raised solely on the condition of the RS search response. Instead, the add orwrite is to be conditioned on the combined response of the RS and the rest of the word-slice (as in the associative search). This condition is satisfied by the combined logic ofgates A, F, and G (Fig. 28). We note that in the case of a simultaneous search and multi-write operation, the COMP will be written into those RS bits with a "1" in the MOR aswell as into those with the search command pattern of Fig. 7.
All other simultaneous operations (given in Fig. 13) are adequately handled by theRS logic of Fig. 28. In general, the actions of the individual operations that make up thesimultaneous operation are executed independently.

5.3 Response Resolution Network

The response resolution network (RRN) is designed to supply the microprogramprocessor (MPP) with a list of addresses of those AM word-slices that have a "1" set inthe response resolution bit (RRB), as was described in Section 4.3. An alternate ap-proach might supply the MPP with the responses themselves instead of their addresses.However, since information storage in the AM is relatively expensive, it is advantageousto use the absolute address of a word-slice as a pointer to auxiliary files. It is possibleto store the address within the word-slice itself, so that it is read out with the response.However, with the RRN of the present design this is generally more expensive than de-
coding the address, as will be shown.

As mentioned in Section 4.3 the RRB is the extreme-left-hand bit in the RS. Its out-put is connected to the RRN by permanently raising the read input (input line 5) into theRS chip containing the RRB. Output line 6 of the RRB is then connected to the RRN.Therefore, when we are interested in actually working with those word-slices that haveresponded to a set of associative searches, we should specify the RRB as the RB of the
last search.

Specifically, the RRN operates as follows: When a "get response" signal is passedto the RRN from the MPP, the RRN gates onto the AMAR the address of the lowest ad-dressed word-slice with the RRB set. By simultaneously raising the AM read and RBcomplement lines, the MPP can read out the contents of that word-slice and at the sametime reset its RRB to "0".t* A subsequent "get response" signal to the RRN will gate theaddress of the next higher responding word-slice onto the AMAR, etc. In this manner,the MPP can obtain a full list, both of the responses and their absolute addresses.

One of the RRN outputs is a line that goes high if at least one of the RRB's is set.This indicates to the MPP, directly after a search, whether any word-slice has respondedand also indicates when the last element in the response list has been extracted by theabove method. Clearly, knowledge, before reading out this list, of the total number of

26

NRL REPORT 6961

AM responses would be of great value to the MPP. While obtaining an exact number of
responses would take as much time as reading out the full list, an approximate number
is quickly available by passing all the inputs to the RRN (the RRB outputs) through a
summation amplifier and performing an analog-to-digital conversion on the resulting
voltage.

A number of RRN's have been proposed for early model associative devices. Almost
all of them have performed some sort of linear search. For these older equipments a
linear search was adequate due to the relatively slow associative search times. However,
in the present design a linear RRN would severely degrade the performance of the AP, so

that we must match its fast associative search time with a faster than linear RRN.

A symmetric (graph theoretic) tree has the property that the height of the highest
branch is equal to the logarithm of the number of branch tips. One would therefore like
to construct such a tree (out of two-input NAND gates) whose root is high if any response
store bit is high. To resolve the ambiguity between multiple responses, one must climb
the tree, pruning off the branch associated with a higher address whenever an ambiguity
is found. When one reaches a branch tip (RRB), the resulting subgraph defines a unique
chain connecting the base of the tree (any response) with the lowest addressed word-
slice with the RRB set.

A circuit whose output is high if at least one RRB is set is depicted in Fig. 29 for an

eight-word AM. Each of the eight inputs is to be connected to the RRB of the word-slice
with the indicated address. If the output of this circuit is high and if a "get response"
signal is generated by the MPP, we must decode this tree to determine the lowest ad-
dressed word-slice that has responded. This is the function of the circuits in Fig. 30,
each of which decodes one bit of the required address. Thus, the output of the circuit in

Fig. 30a is the most significant bit of the lowest addressed word-slice with the RRB set,
etc. The output of each of these circuits is gated into the corresponding bits of the AMAR
if the "get response" line (not shown) is raised by the MPP.

Fig. 29 - Primary circuit of the base 2 100
response resolution network 0

The gate requirements of these circuits may be calculated as follows: For an AM of

2N words, the basic circuit requires

i--N-1

3(1 + 2 + *** + 2 N-l) 3 2 i = 3 (2 N _ 1) (5)

i=O

gates. Decoding the most significant bit of the lowest responding address requires no
additional gates. The second most significant bit requires 1 + 3(1) gates. The third re-
quires 1 + 3(1 + 2). In general, the Mth' most significant bit requires

27

SHORE AND POLKINGHORN, JR.

a. THE MOST SIGNIFICANT BIT

b. THE SECOND BIT

c. THE LEAST SIGNIFICANT BIT

Fig. 30 - Address decoding circuits
for the base 2 RRN

i=M-2

2 M-2) = 1 + 3 E

i=O

2=1 + 3 (2 - 1)

gates. Thus, decoding the entire address requires

(N - 1) + 3 (2 M 1 - 1) = 3 (2N) - 2N - 4

M=N

M=1

gates. Adding Eq. (5), we see that the entire RRN requires a total of

G2 = 6 (2N) - 2N - 7

gates for an AM of 2N words. In the limit, the RRN thus requires only six gates per
word-slice. We note that if the RRN is implemented in AND or OR logic, or some com-
bination of the two, this is further reduced by a factor of between 1/3 and 1/2, with an
appropriate increase in speed.

As was mentioned, an alternate method of obtaining the address is to store it within
each word-slice and read it out with the response. A modified tree circuit that reads out
only the lowest addressed response may require only one or two gates per word-slice.
However, storing the address within the word-slice requires at least N additional gates.
For memories of practical size, therefore, this alternate method is clearly more expen-
sive.

The principles just applied in the base 2 RRN can be extended to an RRN of any base.
For example, for a memory of 4N words the primary circuit of a base 4 RRN is shown in
Fig. 31 (corresponding to Fig. 29 of the base 2 system). Secondary circuits to decode
each bit in the address of the lowest responding word-slice are shown in Fig. 32. The
basic circuit (Fig. 31) requires

(6)

(7)

(8)

28

NRL REPORT 6961

Fig. 31 - Primary circuit of
the base 4 REN

i=N-1

5

i=O

4' = 5 (4N 1)
3 (9)

gates. Each word-slice in a memory of 4 N words has an address 2N bits long. Labeling
each successive pair of bits with an index M, there are N pairs of bits, where M = I
stands for the two most significant bits of the address, etc. To decode each pair of bits
requires

4 M-1 + 4ME

i=O

4i= 4 M1±(4 N 1)
3

gates (M = 1 corresponds to Figs. 32a and 32b). Decoding the entire address requires

M=N

4 M-1 + f
3M=

M=1

(4M) = 4 N 1 + 4 N+1 - (N + 1)
3 3~ 3 (+1

gates. Adding Eq. (9), we see that the entire base 4 RRN requires a total of

M=N

(10)

(11)

29

SHORE AND POLKINGHORN, JR.

a. MOST SIGNIFICANT BIT

b. SECOND MOST SIGNIFICANT BIT

T SIGNIFICANT BIT

d. LEAST SIGNIFICANT BIT

Fig. 32 - Address decoding circuits for the base 4 RRN

G4 = 2(4 N 1) + 4 N+1 _ (N + 1)
4 9 (4N_ 1)3 3 3

34 4 (12)

gates. In the limit, this reduces to 3-7/9 gates per word-slice. Similar to the base 2
system, different logic technologies can further reduce this by a factor of between 1/3
and 1/2, bringing the total down to one or two gates per word-slice.

5.4 Timing Considerations

To obtain a rough idea of the speed at which the AP will operate, it is useful to ana-
lyze the timing of the circuits described in Sections 5 through 5.3. In the following anal-
ysis we have made several implicit assumptions that should be kept in mind. First,
operation times are calculated according to the circuit implementation of Figs. 21 and 28

30

NRL REPORT 6961

through 32. We have already pointed out that, when constructed, these circuits may look
quite different, especially if they are derived from Appendixes A and B. Second, we have
assumed that a single NAND gate delay is a constant, independent of the number of inputs.
Finally, we have ignored the need for line drivers or sense amplifiers, both of which will
be required at various points in the AM.

In Section 5.1.1 it was mentioned that race-time problems are eliminated if we make
sure that the next clock pulse after the initiation of an operation does not come before all
J-K inputs have reached a steady state. Thus a convenient definition of operation time is
the time, in gate delays, from the initiation of an AM operation until it is safe to inject
the next clock pulse (thereby terminating this operation and, perhaps, initiating the next
one). As might be expected, AM operation times depend not only on the specific type of
operation (search, multiadd, etc.) but also on the contents of both the control registers
and the AM itself. We shall examine the nature of this dependence on an operation-by-
operation basis.

5.4.1 The Associative Search Time

We first consider a "simple" associative search consisting solely of "exact match"
and "don't care" specifications, i.e., a search that is entirely bitwise independent (as was
stated in Section 5.1.2). Examination of Fig. 21 shows that the response of each bit is
available at point R a maximum of five gate delays after new values are gated onto the
control registers. The two-gate network that combines the responses for each chip with
those of the preceding chip appears once on each chip. If there are a total of K chips in
the non-RS section of the word-slice, the total time until the combined response is avail-
able at output of bit 1 is given by

To = 5 + 2K (13)

gate delays. (Throughout the following discussion, all times are expressed in units of a
single gate delay.) This final output corresponds to line 21 of the RS (Fig. 28). From
the time that this output is ready it takes an additional four gate delays until RS chip in-
put 7 has been raised (assuming that the associative search line is high). From Fig. 21
we see that another two gates are required until the J-K inputs are properly arranged.
Thus, the RS action takes an additional six gate delays, and the total time necessary for
the bitwise independent search is

T, = 11 + 2K. (14)

We now consider the more complex search that involves a "greater than" or "less
than" specification. To take a worst-case example, suppose that the entire N-bit
(non-RS) word-slice is one syllable and that we are searching for syllables in the AM
larger than the COMP. A worst-case word-slice that satisfies this search will have its
most significant bit larger than that of the COMP with all remaining bits less than the
corresponding COMP bits, thus requiring the affirmative response to ripple down through
every bit. The response (at R) of the most significant bit is available five gate delays
after initiation. The "response propagation" signal (output line 12) is available one gate
delay sooner. The response of the next bit is available one gate delay after this (as seen
by tracing input line 11). In general, the response (at R) of the least significant bit is
available at

T2 = 5 + 2(N - 2), N ' 2. (15)

Meanwhile, the chip responses (output 14) are propagating down at the same effective
speed, since the output of the summary network (enclosed in the dotted box in Fig. 21)

31

SHORE AND POLKINGHORN, JR.

must always wait for the least significant bit of the chip before jumping to the next chip
and waiting again. After the response of the least significant bit is available, an addi-
tional two gate delays are required before the word-slice output is available to the RS.
Adding to this the six gate delays necessary for the RS operation, we see that a worst-
case time of

T3 = 9 + 2N (16)

is required for the "greater than" or "less than" search.

We conclude that the time required for an associative search operation will always
lie between the limits

11 + 2K - T - 9 + 2N) (17)

regardless of the search criteria.

To take the analysis one step further, we consider that the upper limit of T. is a
function not only of the length but of the position of the largest syllable. To see this,
suppose that in the N-bit (non-RS) word-slice the largest syllable subject to a nonsimple
search (the largest syllable with a "greater than" or "less than" search criteria) is M
bits long. It will take 5 + 2(M - 2) gate delays until all responses of this syllable are
ready. If this syllable is located at the extreme left of the word-slice (if it occupies the
most significant bits), an additional 2L gate delays are required for the response to
reach the RS, where L is the number of chip edges standing to the right of the syllable.
(This is independent of the syllable configuration of the remaining bits, since the other
bits' responses will all be ready before that of the least significant bit of the largest
syllable.) Adding the RS operation time, we see that the associative search time is now
within the reduced interval

11+2K T, -'7+2M+2L. (18)

(We note that if M = N, then L = 1 and the upper limit becomes 2N + 9, as in Eq. (16).)

If the largest syllable is located, instead, at the extreme right of the word-slice, the
upper limit in Eq. (18) is reduced even further. The closed form of this new limit is a
fairly complex function of M, N, and the syllable configuration of the rest of the word-
slice. In general, though, the limit is less than that in Eq. (18) and lies within the inter-
val

2M + 11 -upper limit 7 + 2M + 2L, (19)

where L is now the number of chip edges to the left.

If necessitated by processing speed requirements, the lower limit in Eq. (18) and the
upper limit given by Eq. (19) can both be reduced. The procedure also eliminates the de-
pendence of the search operation time on the position of the largest syllable (although not
on its length). To accomplish these improvements (at the expense of construction costs)
we permanently raise input 13 of each chip and no longer connect output 14 to input 13 of
the next chip. Suppose that we have K chips in the (non-RS) word-slice. If we could pass
all K response lines (output 14 from each chip) through a K-input AND gate, the output of
this gate would be the overall word-slice response. Practically speaking, there is a
technological limit on the number of gate inputs. Suppose that the largest AND gate
available has P inputs. If we start with one such gate and take as inputs the outputs of P
other identical AND gates, we have a P2 -input AND network that involves only two gate
delays. In general we can construct a Pn -input AND network requiring n gate delays.
Applying this to an AM word-slice, if n is the smallest integer such that

32

NRL REPORT 6961

pn >

we may build a network of between

i=n-1 i=n

Pi and i pi

i=1 i=1

AND gates that combine the K chip responses in n gate delays. This network reduces
the search operation time to within the interval

13+n'T. '9+2M+n (20)

(which may be compared with Eqs. (18) and (19)). As an example, suppose that we have
available six-input AND gates, that we have less than 37 chips, and that the largest syl-
lable with a nonsimple search specification (as defined by the SDR and the two SC regis-
ters) is 20 bits long. Then,

15 - Ts - 51, (21)

the exact value depending on the search criteria. We note, that T, is independent of both
the total word-slice length and the overall AM size.

5.4.2 Addition Time

If we consider Fig. 21 as the least significant bit of some syllable (so that the carry
is zero), we find that after new values become available on the control lines it takes

T4 = 9 (22)

or
T4= tab +4, (23)

whichever is greater, until the J-K inputs for this AM bit are properly arranged. Here,
tab is the time at which the add bus is raised. The carry from this bit to the next more
significant (to the left) arrives at the second bit after two gate delays. The carry to the
third bit arrives after six gate delays. In general, the carry input to the nth bit is com-
pletely determined after tc = 2n gate delays, for n > 2. If Fig. 21 represents a bit such
that n > 2, then we see that the addition is completed at

T5 = tc + 6 = 2S + 6 S > 2 (24)

or
T5 = t ab + 4,

whichever is greater. Hence, if the largest addition syllable is $.bits wide, addition
takes no longer than 2S + 6, unless tab > 2S + 2. The size of tab depends upon the type
of add being performed.

5.4.2.1 Multiaddition Time

Referring to Fig. 28, we see that two gate delays are required until the transformed
SC contents enter the RS chip. Within the chip, it takes five gate delays until all bits

33

SHORE AND POLKINGHORN, JR.

respond (the RS search is always bitwise independent, as was indicated in Fig. 6 and
Section 5.3.1). Another two gate delays are required to collect the responses, so that the
RS search is completed after nine gate delays. Tracing chip output 14 (Fig. 28) we see
that the add bus is raised at

(26)tab = 15.

Thus, the multiadd operation time will always fall within the limits

19 TMA -2 S + 6, (27)

where S is the number of bits in the largest addition syllable (as defined by the SDR and
MOR). Equation (27) is to be interpreted so that if S < 5 bits, TMA = 1 9.

5.4.2.2 Conventional Addition Time

From Fig. 28 we see that if the conventional add line is raised, the add bus is raised
at

tab = tdec + 2, (28)

where tdec is the time it takes to decode the contents of the AMAR and raise the appro-
priate address select line. Thus, the conventional add operation time falls between the
limits

tdec + 6 - TA - 2S + 6.

Equation (29) is to be interpreted so that if S < tdec 2, TA = t dec + 6.

5.4.3 AM Write Time

(29)

From Fig. 21 we see that from the time a new value is
time required until the J-K inputs are stable is

gated onto the COMP, the

T6 = 6

or
T6 = t'wb + two gate delays,

whichever is larger, where tb is the time at which the write bus is raised. Similar to
tab, the size of tb depends upon the type of write being performed.

5.4.3.1 Multiwrite Time

From Fig. 28 and the discussion of Section 5.4.2.1 it is clear that

twb = 15,

so that the multiwrite operation time is

TMW = twb + 2 = 17.

(32)

(33)

(30)

(31)

34

NRL REPORT 6961

5.4.3.2 Conventional Write Time

From Fig. 28 and the discussion of Section 5.4.2.2 we see that
time is

TW = tdec + 4 (assuming tdec > 2) -

5.4.4 AM Read Time

the conventional write

(34)

From Fig. 21 it is clear that TR, the time until the contents of an AM word-E
available to the AMOB, is given by

TR = t rb + 2,

where trb is the time at which the read bus is raised. From Fig. 23 we see that

trb = tdec + 2
so that

TR = tdec + 4.

,lice is

(35)

(36)

5.4.5 Reduced Operation Times

Comparing Eq. (29) (conventional add), Eq. (27) (multiadd), and Eq. (20) (associative
search), we notice that the upper limit in each equation represents a worst-case opera-
tion. For an AM of sufficient size there will always (statistically speaking) be one word-
slice that is nearly worst case, so that the operation times will for the most part remain
near the upper limits. Thus,

Ts 9+2M+n, (38)

TMA 2S + 6,

and

TA 2S + 6.

along with Eqs. (33), (34), and (37), which are

(39)

(40)

(33)

(34)

TMW = 17,

W= tdec + 4,
and

TR = tdc + 4, (37)

we have six equations that describe the basic AM operation times.

In deriving these six equations we assumed that various control registers had their
contents changed as the AM operations were initiated. Let us now withdraw that assump-
tion. Operationally, this might correspond to the second of two AM operations executed
with the same control register pattern or it might occur if the MPP had other operations
to perform between loading the control registers and raising the appropriate operation
line to the AM.

35

SHORE AND POLKINGHORN, JR.

Consideration of Figs. 21 and 28 as well as the arguments leading to Eqs. (33), (34),
and (37) through (40) results in the following relationships:

If the COMP, SCI, and SC2 have been stable for 5 + 2M + n gate delays, the search
operation time is reduced to

Ts = 4. (41)

If the COMP and the MOR have been stable for 2S - 6 gate delays and the RS portions
of the COMP, SCi, and SC2 have been stable for five gate delays,

TMA = 12. (42)

If the AMAR has been stable for at least t dec and the COMP and MOR have been
stable for 2S gate delays, then

TA = 6. (43)

If the RS sections of the COMP, SCi, and SC2 have been stable for five gate delays,

TMW = 6. (44)

If the AMAR has been stable for at least tdec and the COMP has been stable for two
delays,

Tw = 4. (45)

Finally, if the AMAR has been stable for at least tdec,

TR = 4. (46)

We mention, once again, that all of these times are independent of both word-slice
length and overall AM size.

5.4.6 Simultaneous Operation Times

Suppose a binary operation (defined in Section 4.6) is composed of the two single
operations 01 and 02, with operation times t and t2 respectively. From Sections 5
through 5.4.4 it should be clear that in most cases the binary operation time is simply
the larger of t and t2 . This is because the operations execute independently. The only
exceptions to this rule are the search/multiwrite and search/multiadd operations, the
exceptions being due to the modification, described in Section 4.6, that the multioperation
is executed for those word-slices satisfying the entire search, instead of just the RS
search.

Consider the search/multiadd binary operation. We recall from Section 5.4.1 that
six gate delays are required for completion of an associative search after the word-slice
response is available at gate A in Fig. 28. Tracing the output of A through gates F and G
to the add bus (in the case of a simultaneous operation) we see that the add bus is raised
six gate delays after the word-slice response is available at gate A. Since an additional
four gate delays are required to complete the addition (see Section 5.4.2) we conclude the
following: If TMA > T, the binary operation time is given by

TS/MA = TMA 4

36

(46)

NRL REPORT 6961

However, if TMA < T, then the binary operation time is

TS/MA Ts + 4. (47)

A similar analysis shows that

TS/MW Ts + 2 (48)

(Ts is always greater than TMw.) These increments are hardly significant. In general,
then, we may say that a binary operation takes little or no more time than the longest of
its two component operations.

5.4.7 The Response Resolution Time

Consideration of Figs. 29 and 31, as well as the discussion of Section 5.3 shows that
for an AM of M words, the primary circuit of a base B RRN requires no more than

T7 = 21ogB M (49)

gate delays to stabilize after any RRB's are changed (assuming the availability of B-input
NAND gates). The secondary circuits stabilize within an additional two gate delays, so
that the total time to retrieve the address of the lowest responding word-slice is

TRRN = 2 (log M) + 2. (50)

As mentioned in Section 5.3, this may be reduced as much as 50% through use of different
logic technologies.

Examination of Figs. 28 and 21 shows that the time necessary to reset the RRB of

this word-slice (and, if desired, simultaneously read it out) is

TRRB/R = t dec +6. (51)

5.4.8 Practical Considerations

From the analysis in Sections 5.4.1 through 5.4.7 it is clear that AM operation times
highly depend not only on the type of operation but also on the contents of the AM control
registers. This suggests that to obtain maximum AP processing speed, the use of an
asynchronous clock is necessary. Just how necessary is clear when you consider the
clock repetition rate required by the use of a synchronous clock. From Eq. (17) we see
that if the AM is 60 bits wide, the maximum operation time, which defines the fastest
possible synchronous clock rate, would be 129 gate delays. Since a large percentage of
AM operations take only small fractions of this time, we see that the use of a synchro-
nous clock is unnecessarily restrictive.

A high-PRF synchronous clock can be conveniently converted into an asynchronous
clock that drives the AM as efficiently as possible (wasting a minimum amount of time)
by use of a clock inhibit network (CIN), shown in Fig. 33. The CIN operates as follows:

In each MPP instruction, one syllable contains an AM operation time parameter. This
(compiler-produced) parameter is arrived at through consideration of the AM operation
type as well as the control register contents and the age of the contents. The output of
the corresponding syllable in the MPP instruction register (IR) is connected to the CIN.
The CIN inhibits the incoming clock pulses until the required period (as specified by the
operation time parameter) has passed, at which point one clock pulse is allowed to

37

SHORE AND POLIUNGHORN, JR.

Fig. 33 - Relationship between the MPP,
the AM, and the clock inhibit network

continue through to the CIN output. This output is connected both to the AM and to the
MPP. When the clock pulse arrives at the MPP, the next instruction is gated onto the IR.

If a particular instruction does not involve the AM, i.e., if the AM instruction code
is zero (see Section 4.6), this mechanism still enables us to control the MPP clock ac-
cording to the requirements of the particular MPP instruction.

5.5 Interword Communication - Future Developments in the AP
Communication Topology

A significant description of a processor design may be obtained by an examination of
what communication lines exist between processing elements. In general, the more un-
structured and flexible the communications topology, the more powerful (and, usually,
more difficult to program) is the processing system thus described.

In the AP described herein, the principle communication link is a one-way line from
the COMP to every AM word-slice. Physically, this high-data-rate channel is comprised
of parallel connections between each COMP bit and every bit in the corresponding AM
bit-slice.

Communication is also possible between different sections (or syllables) of a word-
slice, simultaneously for every word-slice in the AM. This intraword-slice communi-
cation is necessarily bit-serial (as described in Sections 4.7.3 and 4.7.4), so that the
communication channel has a lower data rate, and hence is of lesser importance, than
the channel from the COMP to every AM word-slice.

There is, however, in the design presented thus far, no parallel communication be-
tween different word-slices in the AM. Stated differently, information can flow in paral-
lel from the COMP to every point in AM and information can flow horizontally within the
AM but information cannot flow vertically within the AM. We note that a communications
channel from a single word-slice to all other word-slices may be established by reading
this word-slice into the AMOB and then gating the contents of the AMOB onto the COMP.
However, it is not possible for information to flow simultaneously between many sets of
AM word-slices.

38

NRL REPORT 6961

A limited (low-data-rate) vertical information channel can be established by permit-
ting each word-slice to communicate with the word-slice immediately above or below it.
This may be accomplished as follows: From the point of view of an AM word-slice it is
irrelevant whether or not the COMP input (input 2 in Fig. 21) really comes from the
COMP. This suggests that a new pair of external lines be used to select either the
COMP, or the word-slice above, or the word-slice below, as the input that in the present
design comes only from the COMP. If the input selection is made according to the code
in Fig. 34, then Fig. 35 shows how this vertical communications channel might be imple-
mented.

Fig. 34 - Vertical word-slice selection code

CONTROL CONTROL BIT BIT
#1 #2 BELOW ABOVE

COMP

Fig. 35 - Design change for implemen-
tation of a one-dimensional vertical
information flow

As a result of this design change, every operation involving the COMP and selected
word-slices (see Section 4) may be performed with the same selected word-slices and
the word-slice directly above or below (we note that the selection described by Fig. 34 is
for the entire AM). Alternately, one might say that we have succeeded in imposing a
one-dimensional vertical communication topology on a one-dimensional AM array. This
additional capability might be used, for example, in statistical routines where differences
between adjacent array elements are important, or in simulations of one-dimensional
systems, where the behavior of any point (as described by a set of parameters stored
within each word-slice) is considered a function of the parameters of adjacent points.

This immediately suggests that a two-dimensional AM array be constructed by
stacking a series of one-dimensional AM's and connecting them so that a left-right se-
lection can be added to the up-down selection specified in Fig. 34. Such a configuration

INPUT CONTROL LINE CONTROL LINE
WORD-SLICE . # 1 # 2

COMPARAND 1 1

WORD-SLICE 1 0
ABOVE

WORD-SLICE 0 1
BELOW .

39

SHORE AND POLKINGHORN, JR.

would be useful in processing two-dimensional information (e.g., optical processing) as
well as in the simulation of two-dimensional systems. Going one step further, we may
add an additional degree of freedom by stacking a series of two-dimensional AM's and
adding a back-front word-slice selection. Such a configuration would be ideal for the
simulation of any three-dimensional system whose time development may be expressed
as a combination of universal and local effects (universal effects may be introduced
through the COMP). Potential applications include atmospheric studies, atomic reactor
calculations, and plasma simulations. As in most AM operations described in previous
sections, the simulation time would be independent of the number of points being simu-
lated.

The additional gate and control line requirements for these various communication
topologies are summarized in Fig. 36.

COMMUNICATION EXTRA CONTROL GATES
TOPOLOGY LINES REQUIRED

ONE DIMENSIONAL 3N + 2 6N

TWO DIMENSIONAL 5N + 3 9N

THREE DIMENSIONAL 7N + 3 11N

Fig. 36 - Control line and gate requirements for
advanced communication topologies (N is the
number of bits per chip)

The above design modifications have been isolated from the basic design both be-
cause the additional capability is more of special-purpose application than other AP op-
erations and because, in terms of present technologies, the additional gate and control
line requirements are relatively expensive.

40

Appendix A

BOOLEAN EQUATIONS FOR THE ASSOCIATIVE CHIP

In terms of the control lines described in Fig. 22 and the internal lines of Fig. 21 the
Boolean equations for the associative chip are as follows:

6 = 5Q,

10 = 2 Q + 91(Q D 2),

J=815.[(2eQ)0(9.1)] + 15J7.(QQ2)

K= 815-[(2QQ)0(9.1)]

14 = 13 [A. (Q $ 2) + B +

+ 15.7.(Q402)

C.(2.Q) +Do(2.Q)+ 1 (Q $ 2) + 11],

12 = [C:(2 Q) +D*(2.Q) + 11]*1.

In the above,

A = 3-4,

B = 3.4,

C = 3 4,

D = 3.4.

Also, Q,+l is the output of the AM bit flip-flop after the next clock pulse.

41

Appendix B

BOOLEAN EQUATIONS FOR THE RESPONSE STORE

Operation of the response store (Fig. 28) may be conveniently described by the fol-
lowing set of Boolean equations, in terms of the numbered lines summarized on Fig. B1.

NO. DESCRIPTION OF LINE

1 MOR input to RS

2 COMP input to chip
3 SC1 input to chip
4 SC2 input to chip
5 SC1 input to RS

6 SC2 input to RS

7 write input to chip
8 add input to chip
9 COMP input to RS

10 associative search line
11 multi-write line
12 multi-add line
14 response output of RS
15 MOR input to chip

17 read line

18 read bus

19 add bus

20 write bus

21 word-slice response
22 conventional write line
23 conventional add line
24 address select line
25 reset RB line

Fig. B - Summary of the response store control lines

42

NRL REPORT 6961 43

3 = 4 = 5.6,

2 = 9,

18 = 24 17,

15 = 5.6.9(10 + 24.25) + 22X24X1 + 11.14.1.(10 + 10.21),

7 = 21 14 * 10 + 22 24 + 11 14 * (10 + 10 21),

8 = 24 25,

20 = 22 24 + 11 14 (10 + 10 21),

19 = 23 X 24 + 12* 14. (10 + 10 21).

DOCUMENT CONTROL DATA - R & D
(Security classification of title, body of abstract and indexing annotation niu.t be entered when the overall report is classified)

i. ORIGINlATING ACTIVITY (Corporat athor) Z.. REPORT SECURITY CLASSIFICATION

Naval Research Laboratory Unclassified
Washington, D.C . 20390 2b. GROUP

3. REPORT TITLE

A FAST, FLEXIBLE, HIGHLY PARALLEL ASSOCIATIVE PROCESSOR

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

An interim report on a continuing NRL Problem.
5. AU THOR(S) (First name, middle initial, last name)

John E. Shore and Frank A. Polkinghorn, Jr.

6. REPORT DATE 7a. TOTAL NO. OF PAGES 17b. NO. OF REFS

November 28, 1969 50 None

8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)

NRL Problem R06-41
b. PROJECT NO. NRL Report 6961
A37-533-000/6521/WF08-151-702

c. .Sgb. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

d.

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

I1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Department of the Navy
(Naval Air Systems Command)
Washington, D.C. 20360

1. ASTRACT
13. ABSTRACT

The logical design and operation of a general purpose associative processor (GPAP) is
described. The basic circuit consists of a powerful associative cell which may be combined
with an integral number of identical cells and implemented in MSI or LSI at a reasonable cost.
A complete description of this cell, together with logic diagrams, Boolean equations, and a
detailed timing analysis are presented.

The processor obtained by connecting these cells together in quantity has both variable
syllable and variable instruction capability. That is, the total associative word length can be
split on a software basis into any number of syllables (fields), each of arbitrary length. The
search criteria (greater than, less than, greater than or equal to, less than or equal to, exact
match, and don't care) can be specified independently for each of these syllables. The search
time depends only on the width of the largest syllable and is typically less than 1 microsecond
(assuming gate delays of approximately 20 nanoseconds).

The problem of multiple responses (priority resolution) is considered in detail. The
design of a high-speed, inexpensive (in terms of the number of gates required per word)
response resolution network is presented.

Other GPAP operations include conventionally addressed read, write, add, multiwrite,
multiadd, and logical operations. Simultaneous operations, such as write-on-match and
add-on-match, are also possible. These capabilities, as well as several other unique
properties of the design which contribute to its general purpose character and high speed
of operation are described in detail.

(OVER)

D D FORM A 7DD .NOV 851473
S/N 0101-807-6801

(PAGE 1) 45
Security Classification

- - -
.

<v{-llritt Claccifinatinn

Security Classification

14. LKKEYAWORDS LINK LINK C

ROLE WT ROLE WT ROLE WT

Computers
Design
Associative storage
Associative processors
Parallel processors
Integrated circuits
Semiconductor computer storage
Boolean algebra
Array computers
Associative memories
Constant addressable memories
Constant addressable processors
Digital design
Priority resolution in associative memories
Solid state memories
Speed

GPAP will be controlled by a microprogrammable processor with timing produced by a
clock inhibit network which counts down a compiler-produced operation-time parameter.

DDI OR
M 1473 (BACK)

(PAG 2)
46

Security Classification

